新闻中心

专业的枣庄盐水精制厂家

* 来源: * 作者: * 发表时间: 2021-06-17 1:39:09 * 浏览: 2

吕梁电镀脱脂废水经过一段时间的运行,效果较好2防止有机物对陶瓷膜污染在采用海盐为原料制备一次精制盐水过程中,海盐中含有的大量有机物和藻类,在膜表面形成附着,污染过滤通道,导致盐水通量降低,不能正常生产,必须要清洗再生。陶瓷膜对有机物的污染很敏感,因此,必须采取清除有机物的工艺措施。在前反应添加次氯酸钠来破坏有机物及藻类,使陶瓷膜能保持较高的通量,同时,在后续工序添加亚硫酸钠消除精盐水中的游离氯,并且对游离氯采用实时自动仪表监测。通过多次试验分析,确定在反应桶内添加5%次氯酸钠20~30mL/h,在精盐水缓冲罐前添加8%亚硫酸钠20mL/h,可较好地消除有机物对膜管的污染,同时可保证精盐水中游离氯的含量为零。3选择耐压材料外壳防止反冲过程焊口开裂泄漏陶瓷膜法盐水精制系统采用高压错流过滤,正常生产压力为0.3~0.4MPa,反冲过程压力为0.45~0.50MPa,选择PP材质的外壳,在频繁反冲过程后容易出现泄漏。改用经济性和实用性都较好的钢衬PO外壳,保证了正常生产进行。4改进密封及反冲洗方法由于联结花盘密封垫设计不合理,密封面小,反冲压力高时封不住,粗盐水与过滤盐水“短路”。针对该问题,采取了如下措施。(1)对联结密封面进行了重新设计。(2)在原花盘上取掉1根膜管,将其换成拉杆,消除了因温度升高造成的PP花盘变形使膜管窜动,造成盐水“短路”的现象。

吕梁陶瓷膜元件经过一段时间的运行,效果较好2.2防止有机物对陶瓷膜污染在采用海盐为原料制备一次精制盐水过程中,海盐中含有的大量有机物和藻类,在膜表面形成附着,污染过滤通道,导致盐水通量降低,不能正常生产,必须要清洗再生。陶瓷膜对有机物的污染很敏感,因此,必须采取清除有机物的工艺措施。在前反应添加次氯酸钠来破坏有机物及藻类,使陶瓷膜能保持较高的通量,同时,在后续工序添加亚硫酸钠消除精盐水中的游离氯,并且对游离氯采用实时自动仪表监测。通过多次试验分析,确定在反应桶内添加5%次氯酸钠20~30mL/h,在精盐水缓冲罐前添加8%亚硫酸钠20mL/h,可较好地消除有机物对膜管的污染,同时可保证精盐水中游离氯的含量为零。2.3选择耐压材料外壳,防止反冲过程焊口开裂泄漏陶瓷膜法盐水精制系统采用高压错流过滤,正常生产压力为0.3~0.4MPa,反冲过程压力为0.45~0.50MPa,选择PP材质的外壳,在频繁反冲过程后容易出现泄漏。改用经济性和实用性都较好的钢衬PO外壳,保证了正常生产进行。2.4改进密封及反冲洗方法由于联结花盘密封垫设计不合理,密封面小,反冲压力高时封不住,粗盐水与过滤盐水“短路”。针对该问题,采取了如下措施。(1)对联结密封面进行了重新设计。(2)在原花盘上取掉1根膜管,将其换成拉杆,消除了因温度升高造成的PP花盘变形使膜管窜动,造成盐水“短路”的现象。

吕梁泡菜废水劣势:1、由于流程短,盐水质量发生问题缓冲余量小,易对一次盐水质量产生波动;2、陶瓷膜盐水工艺对粗盐水的膜前处理要求较高,需要粗过滤除掉一些杂质,杂质一旦堵塞陶瓷膜,有可能反冲时损坏陶瓷膜;3、此种工艺连续排泥,排泥量约是凯膜的两倍到三倍,增加了盐泥压滤机的生产负荷陶瓷滤芯陶瓷膜陶瓷膜过滤器。

吕梁油田回注水澄清生产应用过程中的问题及工艺改进措施目前,陶瓷膜法一次盐水精制工艺应用的厂家多采用精制盐制取饱和盐水而中国北方的氯碱企业多用海盐,有机物含量高,泥沙等杂质较多,要保证装置能连续性生产,应注意以下几个问题。1、粗盐水中杂质的前处理过滤陶瓷膜的膜管孔径只有3mm,超过此孔径的杂物会产生搭桥,堵塞过滤通道,使得一级压力升高,过滤膜通量下降,短时间内堵死膜管,影响正常连续生产。因此,在粗盐水进入陶瓷膜过滤器前,必须采取可靠的前处理过滤措施。通常设计中,都会在中间池入口加40目的丝网过滤器以拦截粗盐水中的杂物。在运行过程中发现敞开式的过滤器虽可简单有效地过滤盐水中大于2mm的颗粒杂物,但杂草等物质会在丝网上沉积形成简单的“滤饼”,阻挡盐水通过“过滤器”,影响在反应桶搅拌反应均匀的饱和盐水自流进入中间池。而且清理“滤饼”工作量大,一个班需更换清理过滤网4次,特别在冬季北方气温较低的情况下在过滤网表面会有结晶盐析出,通过滤网的盐水通量减小,清理工作量加大。在更换“滤网”的过程中也不可避免会有杂物颗粒和纤维进入陶瓷膜过滤器,长时间运行同样会堵塞膜管。根据陶瓷膜过滤的原理———错流过滤,进入陶瓷膜管前,一定要将粗盐水中的机械杂质处理完全,满足陶瓷膜使用要求。选择好的前处理工艺及设备是用好陶瓷膜的关键。该公司前处理选用了密闭的、具备自动反冲洗功能的处理器,并且过滤器材质一定要选用防腐材料,以防盐水中氯离子的腐蚀,钛材是的材料。

吕梁金属悬浮物废水  2、离子交换膜法  将原盐化盐后按传统的办法进行盐水精制,把一次精盐水经微孔烧结碳素管式过滤器进行过滤后,再经螫合离子交换树脂塔进行二次精制,使盐水中钙、镁含量降到0.002%以下,将二次精制盐水电解,于阳极室生成氯气,阳极室盐水中的Na+通过离子膜进入阴极室与阴极室的OH生成氢氧化钠,H+直接在阴极上放电生成氢气  电解过程中向阳极室加入适量的高纯度盐酸以中和返迁的OH-,阴极室中应加入所需纯水。在阴极室生成的高纯烧碱浓度为30%~32%,可以直接作为液碱产品,也可以进一步熬浓,制得固体烧碱成品。  以上就是给大家总结的关于氢氧化钠的工业制法,工业生产中不可替代的工业氢氧化钾也被广泛运用于医学、化工、军事等诸多领域,也可以作为漂白消毒剂来使用,工业氢氧化钾已然已经在市场当中形成了一股凝聚力,它在与同类产品的竞争当中时刻保持优势。。

2、工艺流程短,自动化程度高,操作简单陶瓷膜盐水过滤工艺流程不需要预处理系统,工艺流程较短陶瓷膜过滤器采用PLC控制器或DCS控制系统进行控制,自动化程度高,减轻了操作人员的劳动强度,只要控制好化盐温度和过碱量,就能保证一次盐水质量。3、占地面积小,投资节省陶瓷膜盐水过滤工艺结构紧凑、设备小,流程短,占地面积小,投资省。与目前应用的有机聚合物膜终端过滤分离工艺相比,也省去了前反应、料液预处理器和加压溶气系统,可使一次盐水装置总投资节省1/3左右陶瓷滤芯陶瓷膜陶瓷膜过滤器。

在反应槽R1451内,粗盐水中的钙离子与精制剂碳酸钠反应形成碳酸钙结晶沉淀物,粗盐水中的镁离子与精制剂氢氧化钠反应生成氢氧化镁胶体沉淀物,次氯酸钠则将盐水中的有机物和菌藻类氧化分解成小分子充分反应后的粗盐水进入中间槽V1451,然后,用九思膜过滤进料泵P1451送往九思膜过滤器N1451进行过滤。九思陶瓷膜过滤单元采用外循环错流过滤方式,九思膜过滤器为三级组件串联过滤,一级组件出口的浓缩盐水进入二级组件,二级组件出口的浓缩盐水进入三级组件。过滤后的一次精制过滤盐水经九思陶瓷膜过滤器N1451渗透清液出口排出,进入精制盐水罐V1409,经由精制过滤盐水泵P1409送离子膜二次精制;从九思膜过滤器N1451浓缩液出口流出的浓缩盐水跟据控制浓缩盐水浓度的情况,按比例排出一部分进入盐泥槽;另一部分浓缩盐水回到中间槽V1451(用于调整九思膜过滤器进料液的固液比,实现控制浓缩液含固量的目的),经九思膜过滤进料泵P1451回到九思膜过滤器N1451内循环过滤。2一代吕梁无机陶瓷膜盐水精制技术在运行中的不足1)设备方面的不足:本公司购买的吕梁无机陶瓷膜过滤器规格型号为JW-45-CS/F4-FRPP,排列方式为3-2-1,一级组件3个,二级组件2个,三级组件1个,该排列方式会导致3级组件膜面流速过快,端面冲刷严重。同时由于组件材质选用的是CS/PO,下花盘采用FRPP材质,因此,长时间运行后会导致PO层剥离组件,导致挤压膜管,致使其膜管断裂。同时下花盘采用FRPP材质,在运行一段时间后,下花盘会变形,导致膜管在组件中上下串动,密封不严,造成盐水不合格;2)工艺方面不足:一代产品盐水精制工艺采用的是单级循环泵供料的方式,同时从无机膜过滤器三级组件出来的浓缩液直接进到中间桶中,导致三级组件出来的2kg压力不能够回收利用,造成能耗较高。自动化控制水平较低,在该工艺中,除了反冲程序采用PLC控制外,其它程序皆采用手动控制,如设备顶部的排气阀,阀门安装位置较高,采用手动操作造成阀门操作不便。三代盐水精制技术的改进1设备的改进本公司二期20万T/a离子膜烧碱一次盐水精制装置采用江苏久吾公司4套JW-100-Ti-CS/HRL吕梁无机陶瓷膜设备。该设备采用5-4-3组合方式排列,一级5个组件,二级4个组件,三级3个组件串并联方式,排列方式更加合理,避免了膜面流速过高,造成端面冲刷严重。同时吕梁无机陶瓷膜设备核心组件采用Ti2材质,下花盘为Ti10,组件材质的更换,避免了膜管的断裂,也为企业减少了由于更换膜管而造成运行成本升高的费用。

通过普通的物理清洗或化学清洗即可完成,降低清洗费用4经济效益4.1使用吕梁无机陶瓷膜工艺,系统无需加入三氯化铁等腐蚀性化学药剂,减少了系统设备和管道的腐蚀危害,三十万吨/年离子膜烧碱装置加入三氯化铁的运行费用为316000元(生产一吨氢氧化钠需加入三氯化铁0.00025吨)。4.2吕梁无机陶瓷膜工艺因不需要粗盐水沉降、预处理系统,整个盐水精制系统流程大大缩短,设备也大幅度减少,三十万吨离子膜烧碱一次盐水装置可节约投资:预处理器设备费1944700元;加压溶气罐设备费2台135000元;后反应器设备费233400元;空气缓冲罐设备费6000元;工艺管道费300000元;设备土建基础费1500000元。合计:1944700元+135000元+233400元+6000元+300000元+1500000元=4119100元。4.3由于不需要加压溶气、预处理器和后反应器等,全套装置占地面积小,与有机膜装置相比,占地面积可减少300平方米以上,只占有机膜装置用地面积的40%。4.4高质量的盐水,可使二次盐水螯合树脂塔的再生周期延长,再生周期从24小时可延长到72小时以上,二次盐水螯合树脂塔每次再生需用纯水230m3,每年节约纯水费用为181100元。减少再生费用和废水排放量60%以上,同时,还延长了螯合树脂塔树脂寿命,保证和增加电解槽离子膜的寿命,提高电流效率,降低直流电消耗。总之,采用吕梁无机陶瓷膜法生产工艺比采用有机膜法生产工艺,三十万吨/年离子膜烧碱节约费用为316000元+4119100元+181100元=4616200元。吕梁无机陶瓷膜盐水精制技术具有过滤精度高、滤后盐水质量好、出水水质稳定等优点,同时还具有工艺简单、操作方便、控制点少、投资少、占地小等特点。陶瓷滤芯陶瓷膜陶瓷膜过滤器。

以陶瓷膜为核心的膜分离技术在化工行业的盐化工、石油化工、煤化工、精细化工、新材料等领域,也已有众多成功应用案例其中,盐化工和石油化工对陶瓷膜材料的应用已相对较为成熟。陶瓷膜材料在化工行业的典型应用工艺包括氯碱化工(属于盐化工领域范畴)的盐水精制工艺等。氯碱化工通过电解饱和盐水制取氯气和烧碱,并以此为原料生产一系列化工产品,是重要的国民经济基础性产业。2014年,我国烧碱产量达3180.20万吨18,位居世界。根据中国膜工业协会的统计,2014年化工与石化领域安装陶瓷膜面积与2013年1.14万平方米基本持平,约占全年陶瓷膜安装总量的21.5%。未来还有很多基于陶瓷膜技术的应用等待开拓,陶瓷膜在化工与石化领域的发展空间依然十分广阔。③食品饮料食品饮料行业也是陶瓷膜的优势应用领域,以陶瓷膜为核心的膜分离技术正逐步在食品饮料行业中的乳制品、果蔬汁饮料、酿酒、调味料等生产环节替代传统过滤分离技术。虽然目前陶瓷膜过滤工艺在食品饮料领域的应用普及率尚较低。未来随着食品饮料行业生产工艺技术的升级改造以及消费者对营养价值等产品品质要求的日益提高,以陶瓷膜为核心的膜分离技术在食品饮料行业还将不断替代传统过滤分离加工工艺,得到更广泛的应用。根据中国膜工业协会的统计,陶瓷膜今年来在食品与饮料行业发展势头良好,2014年安装陶瓷膜面积约为0.75万平方米,同比增幅超过15%,约占全年陶瓷膜安装总量的14.2%。

目前这一材料已在国内的垃圾渗滤液处理、化工污水处理、市政污水处理方面开发应用,未来市场前景广阔另外,国内在消化吸收国外先进的技术方面,于本世纪初采用真空毛细管原理开发的一种真空陶瓷滤盘,在一定真空下具有透水不透气的效果,以此为核心过滤介质,开发的真空圆盘陶瓷过滤机,被广泛应用于各种“杂、细、粘”物料矿物的脱水工艺中。这种真空陶瓷圆盘过滤机相比传统的物料脱水设备,如真空过滤机、板框过滤机及离心过滤机等,脱水效率和节能效果有了明显提高,相同处理能力下,过滤机整机能耗约为其它真空过滤机1/10,处理成本约为板框式过滤机50%,同时滤饼含水量低,滤液清澈,滤板寿命长,可减少大量设备维修维护费用,被誉为实现了选矿物料脱水设备的二次革命。经过长期发展和过滤设备不断更新,真空圆盘陶瓷过滤机在国内选矿业物料脱水领域应用愈来愈广泛,目前已在铅锌矿、硫金矿、铁矿、煤浮选行业大量推广应用。随着近10年国家洁净煤计划实施及节能减排政策的实施,高温陶瓷膜材料在国内得到一定研究和发展,高温陶瓷膜材料在高温气体净化领域的应用也越来越广泛,从冶炼行业高温烟尘净化、到一些新材料领域的高温放空气体净化、垃圾焚烧尾气净化、一直发展到高温煤气净化等。高温陶瓷膜材料用于高温气体净化优点是使用温度高(900℃以下)、使用压力高(4MPa以下)、过滤效率高(99.95%)和使用寿命长(3~10年)等。可以代替滤布,用于高温、高压气体过滤等,可以解决传统滤布耐温低、易烧蚀、易腐蚀、易磨损等问题,减少气体冷却系统,提高过滤效率和余热利用效率、延长过滤设备使用周期。可以说高温陶瓷膜过滤材料的推广应用对于解决特殊领域的高温气体净化技术难题,促进冶金冶炼行业的清洁生产、节能减排,促进化工、新能源材料领域的工艺革新、减少垃圾焚烧排放物排放方面会起积极作用。尤其是在国家大力发展的煤化工产业中,煤气化及低温煤干馏工艺中产生的粗煤合成气、煤焦油气中都含有大量微细颗粒杂质,必须限度的除去,试验证明其它材料或工艺无法满足要求,而高温陶瓷过滤材料则是最理想的过滤材料之一。目前高温陶瓷膜材料已开始在国内的煤化工行业、冶炼行业、石油化工行业、垃圾焚烧及新能源材料领域推广应用。陶瓷滤芯陶瓷膜陶瓷膜过滤器。